A relation between the LG polynomial and the Kauffman polynomial

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

String theory and the Kauffman polynomial

We give a new, precise integrality conjecture for the colored Kauffman polynomial of knots and links inspired by large N dualities and the structure of topological string theory on orientifolds. According to this conjecture, the natural knot invariant to consider in an unoriented theory involves both the colored Kauffman polynomial and the colored HOMFLY polynomial for composite representations...

متن کامل

the relation between bilingualism and translation: a case study of turkish bilingual and persian monolingual translation students

translation studies have become an accepted academic subject and books, journals and doctoral dissertations appear faster than one can read them all (bassnet and lefevere, 1990). but this field also brought with itself so many other issues which needed to be investigated more, in the heart of which, issues like ideology, ethics, culture, bilingualism and multilingualism. it is reported that ove...

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

Topological notions for Kauffman and Vogel’s polynomial

In [2] Kauffman and Vogel constructed a rigid vertex regular isotopy invariant for unoriented four-valent graphs embedded in three dimensional space. It assigns to each embedded graph G a polynomial, denoted [G], in three variables, A, B and a, satisfying the skein relations: [ ] = A[ ] + B[ ] + [ ] [ ] = a[ ], [ ] = a[ ] and is defined in terms of a state-sum and the Dubrovnik polynomial for l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2007

ISSN: 0166-8641

DOI: 10.1016/j.topol.2006.04.023